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[1] A dominant river-tracing-based streamflow and temperature (DRTT) model was
developed by coupling stream thermal dynamics with a source-sink routing model. The
DRTT model was applied using 1/16 degree (�6 km) resolution gridded daily surface
meteorology inputs over a �988,000 km2 Pacific Northwest (PNW) domain to produce
regional daily streamflow and temperature simulations from 1996 to 2005. The DRTT
results showed favorable performance for simulation of daily stream temperature (mean
R2 ¼ 0.72 and root-mean-square error ¼ 2.35�C) and discharge (mean R2 ¼ 0.52 and
annual relative error ¼ 14%) against observations from 12 PNW streams. The DRTT was
then applied with a macroscale hydrologic model to predict streamflow and temperature
changes under historical (1980s) and future (2020s, 2040s, and 2080s) climate change
scenarios (IPCC AR4) as they may affect current and future patterns of freshwater
salmon habitat and associated productivity of PNW streams. The model projected a 3.5%
decrease in mean annual streamflow for the 2020s and 0.6% and 5.5% increases for the
2040s and 2080s, respectively, with projected increase in mean annual stream temperatures
from 0.55�C (2020s) to 1.68�C (2080s). However, summer streamflow decreased from
19.3% (2020s) to 30.3% (2080s), while mean summer stream temperatures warmed from
0.92�C to 2.10�C. The simulations indicate that projected climate change will have greater
impacts on snow dominant streams, with lower summer streamflows and warmer summer
stream temperature changes relative to transient and rain dominant regimes. Lower summer
flows combined with warmer stream temperatures suggest a future with widespread
increased summertime thermal stress for coldwater fish in the PNW region.
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1. Introduction
[2] Streamflow and temperature are critical variables in

aquatic ecosystems, casting crucial environmental constraints
on habitat quantity, quality and distribution. The major influ-
ence of temperature on aquatic biota has led to renewed
interest in the thermal behavior of flowing waters [Webb
et al., 2008]. The magnitude and temporal variability of

streamflows are fundamentally linked to behavioral responses
and life stages of many aquatic species [Yang et al., 2005].
Water temperature is a critical determinant for organism
growth, survival and distribution, influencing the metabolic
rates and the timing of migration, spawning, incubation and
growth of fish and other aquatic organisms [Sullivan et al.,
2000; Dunham et al., 2003; McCullough et al., 2009]. Thus,
exceedance thresholds of stream temperatures represent rela-
tive metrics of potential impacts on aquatic biota [e.g.,
LeBlanc et al., 1997; Sullivan et al., 2000; Wenger et al.,
2011]. Warming trends have been found in observation
records and model simulations for many river systems [Webb
et al., 2008], and warming occurs in relation to changes in
timing and magnitude of stream flows [e.g., Morrison et al.,
2002; Mantua et al., 2010]. Hereafter for simplicity we use
the general term stream and streamflow to describe both
streams (up to fourth order) and larger rivers, and the water
flow from them.

[3] The Pacific Northwest (PNW) region of North Amer-
ica extends from 124�W to 111�W longitude and 41.5�N to
49.5�N latitude. The PNW domain covers �988,000 km2

and comprises the Columbia River basin and coastal drain-
ages, including Washington, Oregon, Idaho, western Mon-
tana and portions of British Columbia. The hydrology of
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PNW streams is particularly sensitive to climate change
because of the strong influence of winter snowpack on water
supply and discharge in this largely mountainous region. Cli-
mate models used in the Intergovernmental Panel on Climate
Change (IPCC) Fourth Assessment Report (AR4) point to a
warming trend in the PNW over the next century; these pro-
jections include mean annual warming of 1.1�C (2.0�F) by
the 2020s, 1.8�C (3.2�F) by the 2040s, and 3.0�C (5.3�F) by
the 2080s, relative to historical (1970 to 1999) conditions
averaged across all climate models [Randall et al., 2007,
Mote and Salathé, 2010]. Stream temperatures in some
PNW and north Pacific Rim river basins are expected to
increase under projected global warming scenarios [e.g.,
Morrison et al., 2002; Yearsley, 2009; Mantua et al., 2010].
These changes likely will have adverse impacts on PNW
aquatic ecosystems including the availability, quality, distri-
bution and abundance of freshwater habitats, notably for
anadromous salmonids [Morrison et al., 2002; Beechie
et al., 2012]. However, available simulations and projections
of flow and temperature changes are constrained to streams
in limited areas, with uncertain accuracy levels for the full
range of PNW streams and particularly for headwaters [e.g.,
Yearsley, 2009; Isaak et al., 2010].

[4] New quantitative tools are needed for improved sim-
ulations of daily streamflows and temperatures over large
regions extending from headwater streams to basin outlets,
and representing current and projected future climate con-
ditions. Various model approaches have been developed to
derive stream temperature from meteorological and hydro-
logical variables, including physically based models [e.g.,
Sinokrot and Stefan, 1993; LeBlanc et al., 1997; Haag and
Luce, 2008; Yearsley, 2009] and empirical approaches
[e.g., Mohseni et al., 1998; Mohseni and Stefan, 1999;
Bogan et al., 2003; van Vliet et al., 2011]. Empirical
regression approaches are comparatively simple and less
data intensive in relation to physically based models. How-
ever, empirical approaches do not imply causation and
have limitations in their transferability outside the range of
conditions from which they were developed [Johnson,
2003; Ducharne, 2007]. This limits their utility for regional
applications, which may contain many basins with varying
landscape and climate characteristics. Physically based mod-
els attempt to represent the major mass and energy exchange
processes within stream reaches and are expected to enable
relatively accurate streamflow and temperature simulations
over larger regions, including entire basin stream networks.
Physically based models are generally more data intensive
than empirical approaches, though recent advances in avail-
ability, resolution and accuracy of meteorological forcing
variables and ancillary vegetation and stream hydrography
data sets enable physically based modeling of streamflow
and temperatures over large spatial regions with potentially
improved accuracy [e.g., Wu et al., 2011; Elsner et al.,
2010; H. Li et al., A physically based runoff routing model
for land surface and Earthsystem models, submitted to Jour-
nal of Hydrometeorology, 2012, hereinafter referred to as
Li et al., submitted manuscript].

[5] Although streamflow and temperature conditions at
the river mouth are important measures of mass and heat
fluxes to the ocean [Yang et al., 2005], salmon and other
migratory aquatic species often are strongly influenced by
flow and temperature conditions throughout the entire stream

network, including small headwater streams. Large spatial
and temporal variations in streamflow and temperature may
naturally characterize many streams [e.g., Marsh and Prowse,
1987; Poff and Ward, 1989; Webb and Zhang, 1997; Yang
et al., 2005]. Stream temperature usually covaries with
streamflow especially in temperate regions [e.g., Constantz,
1998; Gu and Li, 2002]; reduced thermal capacity occurs as
flow decreases, causing increased aquatic temperature varia-
tion in relation to changes in ambient air temperatures.

[6] Dynamic hydraulic flow and heat transfer models
have been effectively applied to predict stream temperature
[Sinokrot and Stefan, 1993; LeBlanc et al., 1997; Sullivan
and Rounds, 2004]. However, previous stream temperature
studies have mainly addressed specific reaches or smaller,
nested subbasins at relatively fine temporal and spatial re-
solution. The application of these models over larger
regions is uncertain, but may potentially be accomplished
by networking a series of reaches [LeBlanc et al., 1997].
In any case, dynamic process level approaches for deriv-
ing more extensive streamflow and temperature simula-
tions for each grid cell within larger basins and regional
domains are lacking. Additionally, few studies have exam-
ined spatial and temporal patterns of interactions between
stream temperature and streamflow over large regions like
the PNW.

[7] For a stream reach or segment, streamflow and tem-
perature conditions at an upstream confluence with a tribu-
tary often represent initial boundary conditions. However,
neglecting flow and temperature conditions upstream of the
initial boundary can be the largest potential error source in
stream temperature estimation [Bogan et al., 2004]. Bound-
ary conditions have been estimated using streamflow and
temperature information from stream gauge observations or
using preprocessed distributed tributary inflow data from a
hydrologic model [e.g., Sinokrot and Stefan, 1993; Yearsley,
2009; Risley et al., 2010]. Accurate prediction of stream
temperature variation along a flow path through a stream
network requires consideration of both local energy balance
and the advected heat flux from upstream reaches and tribu-
taries. Moreover, accurate discharge estimates are a prereq-
uisite for accurate stream temperature simulations [Gu and
Li, 2002; Haag and Luce, 2008]. Unfortunately, discharge
and temperature observations from stream gauge networks
are often sparsely distributed within large basins or regions.
Nonetheless, a robust, distributed hydrologic model can sup-
ply the necessary inputs for flow and temperature estimation
throughout the network, including flow magnitude and ve-
locity, water depth and stream confluence points.

[8] Previous studies have largely focused on estimating
summer stream temperatures [e.g., Morrison et al., 2002;
Tague et al., 2007], while relatively few studies have
involved continuous daily stream temperature simulations
over longer periods (e.g., 1 year or longer), particularly for
regional applications. Streamflow and temperature conditions
for all seasons are important to ecosystem processes and
should be represented by multiyear and continuous stream
temperature modeling [Morrison et al., 2002; Yearsley,
2009].

[9] The objectives of this paper are (1) to present a new
coupled streamflow and temperature process model for esti-
mating dynamic daily flow and temperature conditions
along entire flow paths of regional drainage networks over
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long time series and (2) to apply the streamflow and tem-
perature model using daily runoff inputs from a macroscale
hydrology model to determine historical and potential
future flow and temperature conditions under projected cli-
mate change scenarios (predicted by 20 GCMs) for the
PNW domain. The following sections describe the model
algorithms, methods, and data used in this study. The
model results are verified using available site observations
within the PNW domain. Model-projected changes in simu-
lated streamflow and temperature conditions are presented
for future climate change scenarios, followed by a discus-
sion of the environmental implications of these changes for
PNW salmon populations.

2. Methodology
[10] Dynamic simulations of hydrologic variables

including streamflow have been used to evaluate climate
change impacts on regional hydrology [e.g., Christensen
and Lettenmaier, 2007; Maurer, 2007; Elsner et al., 2010].
These simulations employ hydrologic models driven by
gridded surface meteorology inputs interpolated from re-
gional weather stations and downscaled ensembles of pro-
jected climate conditions from global climate models
(GCMs). For our work, a regional scale hydrologic simula-
tion scheme was developed to predict daily streamflow and
stream temperature conditions under historical (1980s) and
future (2020s, 2040s, and 2080s) climate change scenarios
across the PNW domain. The future climate scenarios were
defined from ensemble GCM simulations of the IPCC AR4
[Randall et al., 2007] for the A1B climate scenario (a mid-
dle of the road scenario in terms of total human emissions).
The resulting model simulations were used to analyze spa-
tial patterns and seasonal changes in historical streamflow
and temperature conditions, and to estimate potential future
flow and temperature changes under projected climate
change scenarios.

[11] The simulation scheme consists of a two-step pro-
cess involving (1) macroscale hydrologic model predictions
of daily runoff from the variable infiltration capacity (VIC)
model [Liang et al., 1994, 1996] and (2) dynamic routing
and stream temperature model simulations using VIC
derived inputs. The VIC model was first employed to gener-
ate daily water flux (e.g., runoff, soil moisture) and associ-
ated forcing variables (i.e., incoming short-wave and long-
wave radiation, vapor pressure and vapor pressure deficit)
for the daily streamflow and temperature simulations. The
VIC model and streamflow and temperature simulations are
driven by daily surface meteorology inputs from historical
reanalysis and spatially downscaled future forcing data
[Maurer et al., 2002; Hamlet and Lettenmaier, 2005; Mote
and Salathé, 2010; Elsner et al., 2010].

[12] We developed a source-sink hydrologic routing
model to distribute VIC daily runoff estimates and predict
streamflow for every grid cell along defined basin flow path-
ways. A coupled streamflow and temperature model was
then developed by merging stream thermal dynamics simu-
lations with the source-sink routing model. These models
were established at coarse spatial resolution (i.e., 1/16 degree
resolution in this study), and the horizontal advection of
water and heat flux were accumulated along dominant flow
paths defined from spatial upscaling of finer-scale (1 km

resolution) stream network information. The coupled stream-
flow and temperature model for this investigation uses a
hierarchical dominant river tracing (DRT) upscaling algo-
rithm [Wu et al., 2011] that defines the underlying hydrogra-
phy used for the streamflow and temperature calculations.
The DRT hydrography parameters are defined in a hierarchi-
cal stepwise (upstream to downstream) classification of grid
cells that include flow direction, flow distance, drainage area
and channel slope. These parameters are defined at the rela-
tively coarse spatial resolution of the VIC model simulations
from finer-scale digital terrain information. To derive coarser
resolution hydrography parameters, the DRT algorithm pre-
serves the baseline fine-scale hierarchical drainage structure
by tracing each entire flow path from headwater to river
mouth at fine scale while prioritizing successively higher-
order basins and rivers for tracing [Wu et al., 2011]. Here-
after, the hierarchical dominant river tracing based stream-
flow and temperature model for this investigation is referred
to as DRTT. The DRTT model describes heat and water
advection-dispersion processes along the DRT-defined hydro-
logic drainage network, starting with upstream source area
cells that feed basin outlet/sink cells. Thus the model deter-
mines both streamflow and temperature on a daily basis for
each point along a stream flow path. The DRTT model is
described in the following sections and contains three primary
modules: water and heat transport in stream networks; the
coupling of hydrologic routing processes and thermal dynam-
ics, and airshed and stream-riparian thermal dynamics.

2.1. DRTT Coupled Streamflow and Temperature
Modeling

2.1.1. Streamflow and Heat Transport
[13] For all grid cells in a study domain, all upstream

source area cells and associated flow paths are first identi-
fied by the DRTT model according to the DRT defined
flow direction map. A grid cell to be modeled for stream-
flow and temperature is hereafter referred to as the target
cell. The unsteady open channel streamflow without lateral
flow, is described using a one-dimensional advection-dis-
persion equation for each cell along the flow path from a
source grid cell (with runoff generated) to the target cell
according to

@q

@t
þ c

@q

@x
� d

@2q

@x2
¼ 0 (1)

where q is the streamflow rate (m3 s�1), c is the kinematic
wave celerity (m s�1), d is the longitudinal dispersion coef-
ficient (m2 s�1), t is the time (s), and x is the flow distance
(m). The in-stream heat transport takes the form

@Tw

@t
þ c

@Tw

@x
� d

@2Tw

@x2
¼ �H � fA

Cp �M
(2)

where Tw is the water temperature (�C), �H is the net heat
change rate (W m�2), fA is the effective water pulse surface
area exposed to the air for heat interaction (m2), Cp is the
specific heat of water (J kg�1 �C�1), and M is the mass of
the water pulse (kg). The effects of lakes and impound-
ments, groundwater interactions and canopy effects are not
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represented in the DRTT model. All water particles in a
water pulse are assumed to reach the sink cell in the same
time interval independently. By also neglecting the disper-
sion term in equation (2), the rate of stream temperature
change in the water pulse can be expressed as

@Tw

@t
¼ �H � fA

Cp �M
(3)

The calculation of net heat change rate (�H) is described
in section 2.2.
2.1.2. Coupled Streamflow and Temperature
Simulation

[14] Owing to the unidirectional flow of streams, stream
temperature in a target grid cell is determined from the
integrated effects of the water thermal dynamics of all
upstream runoff after traveling from the source grid cell(s)
and along the connecting flow path to the specified target
cell. Therefore, besides thermal variables, flow-related varia-
bles (e.g. volume, residence time and area of surface expo-
sure) are also important for determining stream temperature.
Upstream flow effects on stream temperature are particularly
important for deriving distributed stream temperature esti-
mates over large basins. In regional applications, nonuni-
form streamflows move through hierarchical stream systems
where lower order tributaries with different stream tempera-
tures merge at various confluences, resulting in large
changes in associated stream temperatures that then define
initial conditions for downstream reaches. Hydrologic and
thermal characteristics vary spatially across larger basins.
Basin hydrologic response characteristics, including runoff
regime, discharge rate/amount and water residence time,
must be effectively represented in a physically based distrib-
uted stream temperature model as a prerequisite for accurate
streamflow and temperature simulations. Streamflow and
temperature simulations can be coupled by combining the
numeric solution of the one-dimensional advection-disper-
sion equations (equations (1) and (2)). Statistical distribution
curves are widely used to define the hydrologic response
function (i.e. unit hydrograph) by considering the lag time
variation of water particles from different sub-grid areas. In
this study, the DRTT model routing scheme uses the first-
passage time probability density function:

�iðtÞ ¼
1

2t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðt=TiÞ=�i

p exp � ½1� ðt=TiÞ�2

4ðt=TiÞ=�i

( )
(4)

following Olivera and Maidment [1999] and Olivera et al.
[2000] to approximate the numeric solution of the advection-
dispersion equation (1), where �iðtÞ (s�1) is the response
function at source cell i, Ti is the average lag time (s), �i is a
representative Péclet number (dimensionless) for the flow
path from the source cell i to the corresponding sink cell (tar-
get cell). Following Olivera and Maidment [1999], Ti and �i

are calculated as

Ti ¼
Xn

i¼1

1

vi
li (5)

Y
i
¼

Xn

i¼1

1

vi
li

" #2�Xn

i¼1

di

v3
i

li (6)

where vi is the mean flow velocity (m s�1), li is the flow
distance (m), and n is the number of grid cells along the
flow path. The contribution of runoff generated in each
upstream source cell to the streamflow in a target cell is
delineated by

Qðx; tÞ ¼
Z t

0
Uðt � sÞRðx; sÞds (7)

where Qðx; tÞ is the routed runoff (m3) contributed by an
upstream source cell, Rðx; sÞ is the runoff generated in the
source cell (m3), and Uðt � sÞ is the hydrologic response
function (dimensionless) for the source cell, defined by
equation (4). The contribution of all upstream source cells
to streamflow in the target cell is given by

Qnðx; tÞ ¼
Xi¼n

i¼1

Z t

0
Uiðt � sÞRiðx; sÞds (8)

where Qnðx; tÞ is the total streamflow routed to the target
cell from all upstream source cells, and n is the number of
upstream source cells. Based on the hydrologic response
function (equation (4)), the runoff generated at each time
step (Ri) within a source cell is divided into a number dis-
crete of water pulses (pi) (Figure 1a). A water pulse is
defined as the collection of all water particles that are from
the same source cell and reach the sink (target) cell at the
same time step. Because it is challenging to determine the
extent of the upstream zone of influence for stream tempera-
ture [Johnson, 2003], the DRTT model couples the stream-
flow and temperature simulation by tracing each water
pulse beginning from the upstream source cell(s) to the tar-
get cell along the DRT defined flow path [Wu et al., 2011],
while applying the thermal dynamics equations on each cell
(stream segment) in the flow path using local hydrologic
and meteorological conditions as model drivers (Figure 1a).
The temperature change of the water pulse at each time step
in each stream segment along the flow path is calculated
using equations for stream thermal dynamics described in
section 2.2. With the advective heat flux from each source
flow path, the stream temperature at the target cell is calcu-
lated as a mass weighted average (well mixed) temperature
of all upstream water pulses routed to the target cell at each
time step:

Tw;nðx; tÞ ¼
Qn�1ðx; tÞ � Tw;n�1ðx; tÞ þUnðt� sÞRnðx; sÞ � Twðx; tÞ

Qn�1ðx; tÞ þUnðt� sÞRnðx; sÞ
(9)

where Tw;nðx; tÞ is the stream temperature of the target cell at
location x and time t when n upstream water pulses have
reached and mixed, Qn�1ðx; tÞ and Tw;n�1ðx; tÞ are the respec-
tive streamflow and temperature of the target cell when n � 1
water pulses have reached and mixed, Unðt � sÞRnðx; sÞ is
the nth water pulse, and Twðx; tÞ is the temperature of the nth
water pulse when it reaches the target cell at time t. At any
time t, the water pulses reaching the target cell may originate
from any upstream portion of the basin, and some upstream
source cells may contribute multiple water pulses to the target
cell given runoff generated at different time steps. Each water
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pulse flows from a headwater grid cell downstream along the
flow path defined by the DRT upscaling algorithm [Wu et al.,
2011]. Therefore, the stream temperature estimated for a tar-
get grid cell at a coarse spatial resolution (e.g., 1/16 degree
used in this study) represents the bulk temperature of a verti-
cally mixed volume of water from the dominant stream seg-
ment within the grid cell under natural conditions. The
dominant stream segment is defined as the stream segment
dominating the local drainage of the target cell, which also
represents a segment of the larger basin stream network [Wu
et al., 2011]. Hereafter, the dominant stream segment is
referred to as the stream reach.
2.1.3. Water Pulse Effective Surface Area

[15] Stream temperature changes in a natural stream reach
are mainly controlled by thermal dynamics occurring
through the water-atmosphere interface, if lateral and
groundwater flows are not included. The channel water sur-
face area is a critical variable influencing the rate of water-
atmosphere heat exchange. Many factors, including flow vol-
ume and drainage density, channel morphology (particularly
channel width) and shading (by vegetation and topography),
can significantly affect stream temperature essentially by
changing water surface area exposure to heat flux interaction.
However, spatially explicit measures of these factors are
largely unavailable on a regional basis. Therefore, the DRTT
model employs the advection-dispersion equation (equation
(2)) similar to previous studies [Sinokrot and Stefan, 1993;
Bogan et al., 2004], while using the effective surface area
(fA) of the water pulse in the heat source/sink term. For a
water pulse from a source cell, the corresponding fA at each
downstream reach (cell) is estimated using a Manning type
equation (10), mainly based on the water pulse volume and
distance from the source cell:

fA ¼ f ðxÞ � �� Q�
p (10)

where Qp is the magnitude of the water pulse (m3), � and �
are a dimensionless linear coefficient and exponent that

define the shape of fA response to Qp ; fA has no effect on
streamflow calculation.

[16] In upstream basin areas, kinematic waves generally
dominate flow characteristics where gravity and channel
bed friction are considered more important than other
forces [Chow et al., 1988]. Runoff tends to concentrate
downstream owing to accumulation of overland flows and
contributions from lower-order stream channels. For runoff
routing at coarser spatial resolutions, only a single domi-
nant river is assigned for each grid cell. However, in reality
there may be many subgrid streams (flow paths) draining
water downstream from a coarse grid cell area [Wu et al.,
2011]; each water pulse may consist of water particles
from diverse areas within a source cell, and these water
particles travel downstream along many smaller stream net-
works (or overland flow paths) out of upstream areas (not
just the source cell where runoff was generated; Figure 2a).
Therefore, fA decreases along the downstream flow path
when water particles tend to be constrained in a single,
larger stream (Figures 2a and 2b). An additional coefficient
f(x) is introduced to account for the decrease in fA along the
downstream flow path as

f ðxÞ ¼ 0:8L=l (11)

where L is the upstream dominant stream length (m) and l is
the average flow distance of each grid cell from all upstream
grid cells. The entire PNW domain is identified as a Strahler
seventh-order river system from the DRT derived stream
network at 1/16 degree resolution. In this study, once a
water pulse enters a stream reach with upstream drainage
area greater than 15,000 km2 (�400 grid cells, or fourth- to
fifth-order dominant stream reach at 1/16 degree resolution),
the fA term remains constant for downstream, higher-order
stream reaches. The empirical shape parameters (� and �)
that define the fA response to water pulse volume Qp (equa-
tion (10)) are determined by calibrating regional stream tem-
perature estimates against available gauge measurements.

Figure 1. (a) The DRTT model couples streamflow and temperature simulation by applying thermal
dynamics on each water pulse starting from a source cell to the sink or target cell. Each water pulse (Pi)
comes from the total runoff (Ri) generated in a source cell at each time interval according to the unit
hydrograph. The streamflow (Qi) and temperature (Ti) of a target cell at a specific time are the sum of the
discharge and average temperature from all the upstream pulses. (b) Schematic of heat fluxes (H terms;
see text) at a local river reach.
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Calibration of � and � can partially compensate for potential
reductions in model temperature accuracy due to unavail-
ability of ancillary information on stream shading, flow path
density and distance to headwater, and limited knowledge of
their effects on fA along streamflow paths. Calibration of the
� and � parameters, and resulting effective water pulse sur-
face area is a model simplification that decreases DRTT
requirements for additional process information influencing
fA along river flow paths. Model performance sensitivity in
response to � and � is discussed in section 6.
2.1.4. Exposure Time at Each Stream Reach

[17] The thermal advection-dispersion equation (2) is
applied to each water pulse in each grid cell along a stream
flow path from source cell to target cell. The exposure time
(i.e., lag time) in each stream reach is important for determin-
ing the amount of water pulse heat gain and loss. The lag time
is also important, especially for larger streams or longer flow
paths, for determining the time and duration of local meteoro-
logical forcings described in section 2.2. The water pulse lag
time (ti) is estimated for each stream reach according to the
estimated flow distance (li) and flow velocity (vi) (Figure 2c):

ti ¼
li
vi

(12)

Flow distance is obtained from the DRT upscaling algo-
rithm [Wu et al., 2011]. The DRT hydrography for this
study was obtained from the 1 km resolution HYDRO1K
global database (Earth Resources Observation and Science
Center, USGS, http://eros.usgs.gov/#/Find_Data/Products_
and_Data_Available/gtopo30/hydro). A spatially distributed
but time-invariant flow velocity field was estimated using

the HYDRO1K hydrography according to the method pro-
posed by Maidment et al. [1996], which employs upstream
drainage area in Manning’s equation to allow flow velocity
to increase downstream where water tends to deepen with
larger upstream drainage area, and effective resistance of the
river channel on flow diminishes because of larger hydraulic
radius. The velocity field is also used for deriving the hydro-
logic response function (equation (4)).
2.1.5. Headwater Temperature

[18] It is very challenging to explicitly model the physi-
cal processes to estimate headwater (source cell) tempera-
ture from the beginning of precipitation to the time when
runoff reaches a headwater stream, due to a paucity of sup-
porting physical data over larger basins. Identification of
headwater streams over large basins also remains an open
challenge. For a specified headwater cell, we use a single
water temperature for all runoff entering a headwater
stream, which defines the DRTT temperature model initial
condition; the initial water temperature at the source cells
is hereafter referred to as the headwater temperature. For
mesoscale or macroscale stream water temperature analy-
sis, the influence of headwater temperature on downstream
water temperature rapidly diminishes through active heat
exchange across the air-water interface along river flow
paths [Mohseni and Stefan, 1999; Haag and Luce, 2008;
Yearsley, 2009]. Therefore, we estimate the headwater tem-
perature (Theadwater) as a simple linear function of mean an-
nual air temperature (Tannual) and actual air temperature
(Tair) of the overlying grid cell (equation (13)). Tannual is
assumed to approximate groundwater or mean annual run-
off temperature and the steady component of headwater
temperature, while Tair represents the influence of short-
term air temperature variability on headwater temperatures.
Tannual can also indicate, to some degree, the impacts of dif-
ferent characteristic runoff regimes (e.g., cool snowmelt
runoff versus warmer rainfall-runoff) on headwater temper-
ature. This approach is a simplification of complex proc-
esses, but has been shown to produce reasonably accurate
headwater conditions for macroscale simulation of stream
water temperatures [Haag and Luce, 2008].

Theadwater ¼ min

max
Tannual þ 0:3 � ðTair � TannualÞ
0:0

( )

if ðTheadwater > 12:0Þ
12:0þ 0:5 � ðTair � 12:0Þ

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
(13)

2.2. Stream Thermal Dynamics

[19] The DRTT model defines the energy balance for
each water pulse and time step by estimating corresponding
radiation, evaporation, conduction, convection and advec-
tion components. Stream temperature change occurring
during the water pulse transit period through a specific
stream reach is determined by the stream thermal dynamics
as determined from six energy or heat (H) source and sink
terms (Figure 1b). Thus the change in reach-specific net
heat balance (�H) is determined as the sum of component
energy gains and losses at each time step:

�H ¼ Hs þ Hl þ He þ Hc þ Hh þ Ha (14)

Figure 2. Schematic for a water pulse traveling through a
flow path from source to sink (target) cells. (a) Each water
pulse consists of water particles from the upstream source
cells, including tributaries and overland flows to the sink
cell downstream. (b) The effective surface area of a water
pulse decreases along the downstream flow path. (c) The
water pulse lag time (ti) and flow velocity (vi) are estimated
for each stream reach along the main stem of the flow path
as defined from the fine-scale hydrography data.
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where Hs and Hl are net solar short-wave and long-wave
radiation (W m�2), He is the flux of latent heat (W m�2),
Hc is the conductive heat flux (W m�2) at the streambed,
Hh is the flux of sensible heat (W m�2), and Ha is the ad-
vective heat flux (W m�2). Hs is the difference between
incoming and reflected short-wave solar radiation (Hsi),
with the reflected solar radiation (albedo) estimated as 3%
of Hsi [Caissie et al., 2007; Hebert et al., 2011]. The Hl

term is estimated as the difference between incoming
atmosphere long-wave radiation (Hli) and long-wave radia-
tion emitted by the water (Hlw) :

Hlw ¼ 0:97� �� ðTw þ 273:15Þ4 (15)

where 0.97 represents the water emissivity for long-wave
radiation [Anderson, 1954], � is the Stefan-Boltzmann con-
stant (5.67 � 10�8 W m�2 K�4). The Hsi and Hli terms are
calculated from the VIC model based on local daily air
temperature maxima and minima, and precipitation follow-
ing Kimball et al. [1997], Thornton and Running [1999],
and Bras [1990]. The He term is estimated as

He ¼ ��� E � Le=ð86:40� 106Þ (16)

where � is the water density (kg m�3), E is the evaporation
rate (mm d�1), Le is the latent heat of vaporization (J kg�1),
and 86:40� 106 converts units from mm d�1 to m s�1. The
evaporation rate is determined as

E ¼ Kl � ðesat � eÞ (17)

where Kl is an empirical coefficient for the turbulent
exchange of water vapor (mm/(d hPa)), esat is the saturation
vapor pressure at the water surface (hPa), and e is the actual
vapor pressure (hPa). The esat and e terms are also estimated
from the VIC model following Kimball et al. [1997] and
Thornton and Running [1999]. The Kl term is defined as

Kl ¼ 0:211þ 0:103� Vwind � Fwind (18)

where Vwind is the estimated local wind speed (m s�1) at
10 m height, Fwind is a dimensionless factor for wind shel-
tering by riparian vegetation. L is estimated from Tw by the
Magnus-Tetons formula:

Le ¼ 2499:64� 2:51� Tw (19)

The Hh term is estimated from Haag and Luce [2008] as

Hh ¼ �� �
P

1013
� Kl � Le� Tw � Tair

86:40� 106 � � (20)

where � is the psychrometric constant at normal pressure
(0.655 hPa/�C), P is the actual air pressure (hPa). The con-
ductive heat flux (Hc) is estimated as a fixed proportion
(assumed 5%) of the net solar radiative flux. With all energy

sources and sinks defined above, equation (3) can be further
expressed as

Tw;nþ1 � Tw;n

�t

¼
fA � Hs þ Hl þ He þ Hc þ K�ðTw;nþ1þTw;nÞ

2 � K � Tair

h i
Cp �M

(21)

where

K ¼ �� � P

1013
� Kl � Le� �=ð86:4� 106Þ (22)

Equation (21) states that the change of heat storage in each
water pulse and time step is equivalent to the heat exchange
between the water pulse and its surrounding environment.

3. VIC and DRTT Inputs and Outputs
[20] Both the VIC and DRTT models were run at a daily

time step and 1/16 degree spatial resolution for all PNW
basins. The simulations require gridded daily surface mete-
orology inputs as primary model forcings. These data were
obtained from a database of existing PNW historical sur-
face meteorology and projected climate change scenarios
that were previously used for VIC model simulations over
the PNW domain [Elsner et al., 2010]. These data include a
1/16 degree resolution gridded data set of historical (1916–
2006) daily precipitation and air temperature (Tmx, Tmn)
derived from surface station observations following Maurer
et al. [2002] and Hamlet and Lettenmaier [2005]. Daily
wind speed values were downscaled from National Centers
for Environmental Prediction–National Center for Atmos-
pheric Research (NCEP-NCAR) reanalysis products [Kalnay
et al., 1996]. Other VIC forcing variables were derived from
the daily air temperature range or mean air temperature fol-
lowing Maurer et al. [2002].

[21] The VIC and DRTT simulations of projected future
(to 2100) conditions were derived using regionally down-
scaled daily surface meteorology inputs derived from IPCC
GCM climate change scenarios [Randall et al., 2007]. The
data were obtained from a common set of global 21st cen-
tury climate simulations archived from 21 individual
GCMs driven by several greenhouse gas emissions scenar-
ios described in the IPCC Special Report on Emissions
Scenarios (SRES) [Intergovernmental Panel on Climate
Change, 2000; Randall et al., 2007]. Among all SRES sce-
narios, the B1, A1B and A2 scenarios were commonly cho-
sen as GCM forcings representing respective low-, medium-,
and high-emission scenarios. In this study we selected the
A1B scenario based GCM future climate simulations as pri-
mary VIC and DRTT model forcings to evaluate potential
climate change impacts on estimated streamflow and temper-
ature conditions in the PNW basins. The �3� (latitude by
longitude) GCM spatial resolution is generally too coarse for
hydrologic model simulations. For this investigation, we
used the composite A1B emission scenario PNW regional
climate change projection database from Elsner et al. [2010],
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which used a delta method [Hamlet and Lettenmaier, 1999;
Loáiciga et al., 2000] for regional downscaling of the GCM
outputs to 1/16 degree resolution. The perturbations, or del-
tas, were derived from 20 IPCC GCM simulations for the
A1B scenario and consist of projected regional monthly
mean changes in average PNW temperatures (�C) and pre-
cipitation (%) for future periods.

[22] We examined the GCM projected daily simulations
for estimated average conditions for three future periods,
including 2010–2039 2030–2059 and 2070–2099 following
Elsner et al. [2010] and Mote and Salathé [2010]; these re-
spective periods are hereafter denoted as the 2020s, 2040s
and 2080s. For future simulations at each grid cell, the VIC
model was driven by observed daily maximum and mini-
mum air temperatures added to the distributed temperature
delta value and daily precipitation multiplied by the distrib-
uted precipitation fraction delta value [Elsner et al., 2010;
Mote and Salathé, 2010]. The resulting VIC simulations
were used to generate daily runoff and other forcing varia-
bles that were then used as primary drivers of the DRTT
simulations. The delta method described above preserves
realistic temporal sequencing associated with the historical
record, avoids bias in the GCM simulations, and allows for
the evaluation of climate change impacts in the context of
historical events [Elsner et al., 2010]. However, this
approach ignores potential changes in higher statistical
moments (e.g., variance, skewness) of future climate distri-
butions relative to historical conditions [Mote and Salathé,
2010].

[23] The VIC model generated runoff was routed by the
DRTT model using spatial hydrography data (including
flow direction, flow distance, channel slope, upstream
drainage area and flow velocity field) generated from the
DRT stream network upscaling algorithm and HYDRO1K
baseline hydrography inputs [Wu et al., 2011]. The daily
surface meteorology forcings required for the DRTT stream
thermal dynamics simulations include incoming short-
wave and long-wave solar radiation, surface atmospheric
pressure and humidity, and vapor pressure deficit ; these
variables were generated by the VIC model running in the
forcing mode. Other DRTT inputs include daily surface
wind speed and mean air temperature, and were obtained
from the same sources used for the VIC model wind and
temperature forcings described above.

4. Model Calibration and Validation
[24] Model calibration was used to improve the perform-

ance of VIC and DRTT regional simulations. The VIC run-
off simulations provide critical inputs for the DRTT model
and were calibrated prior to the DRTT stream temperature
calibration process. Daily stream discharge data from re-
gional gauge observations are widely available in the PNW
domain, while observations for stream temperature are
comparatively sparse. Regional gauges having both stream-
flow and temperature observations were prioritized for
model validation. In order to establish the validity of the
models, the streamflow and temperature simulations were
compared with available independent historical observa-
tions from 12 streams and 14 gauges (observations of either
streamflow or temperature, or both) distributed across the
PNW domain (Figure 3). The Nash-Sutcliffe coefficient

(NSC) [Nash and Sutcliffe, 1970], root-mean-square error
(RMSE), mean absolute error (MAE), annual relative error
(ARE) and correlation coefficient (R) metrics were derived
from these comparisons and used to evaluate relative agree-
ment between the simulated results and observations:

NSC ¼ 1:0�

XN

i¼1

ðSi � OiÞ2

XN

i¼1

ðOi � OÞ2
(23)

RMSE ¼ 1

N

XN

i¼1

ðSi � OiÞ2 (24)

MAE ¼ 1

N

XN

i¼1

jSi � Oij (25)

where Oi is the observed streamflow or temperature; Si is
the corresponding model simulated variable ; O is the aver-
age value of Oi ; and N is the number of days. Daily and
monthly NSC, daily R and ARE metrics were used for eval-
uation of the streamflow simulations, while daily and
monthly NSC, daily RMSE, MAE and R metrics were used
for evaluating the stream temperature simulations.

4.1. Streamflow

[25] The VIC model has been successfully used for previ-
ous hydrologic simulations and water resource management
studies in the PNW [e.g., Hamlet and Lettenmaier, 2000;

Figure 3. PNW domain and streamflow and temperature
gauges. The gauges in orange have observations for both
streamflow and temperature, while the gauges in green and
in yellow have only streamflow and temperature observa-
tions, respectively. The blue lines are the 1/16 degree spa-
tial resolution stream networks derived by the DRT [Wu
et al., 2011] using HYDROK1K hydrography data. The
capital C (in red) indicates the location of the outlet of
the Columbia River Basin. The gray background is the
HYDRO1K DEM of the domain.
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Hamlet et al., 2010a, 2010b; Elsner et al., 2010], and is
generally well parameterized in this domain for water and
energy balance simulations. For this study, we used the
same 1/16 degree resolution gridded and calibrated soil
parameters as Hamlet et al. [2010a] for the VIC PNW
runoff simulations.

[26] Additional model calibration was performed in
some subbasins (with relative less regulation) where the
monthly NSC was below 0.5 or the daily NSC was below
0.1 for streamflow, and both streamflow and temperature
observations were available. Model calibration was also
performed for two subbasins represented by USGS stream
gauge observations at Salmon River (13302500) and Clark
Fork (12323800) sites; the model streamflow calculations
were calibrated using five years (1996–2000) of available
daily discharge records from these stations. The VIC
model calibration was only performed for runoff genera-
tion because all other parameters for hydrologic routing
were obtained from the DRT hydrography inputs (see sec-
tion 2). The VIC runoff parameters used for calibration
include the top two soil layer thicknesses (m), infiltration
rate parameter (b_infilt), maximum base flowrate (Dsmax),
base flowrate fraction (Ds) and fraction of bottom soil
layer moisture (Ws).

[27] We calibrated the VIC model with the DRTT rout-
ing scheme using the SCE-UA method [Duan et al., 1992]
against daily streamflow gauge data. The SCE-UA method
is based on a synthesis of deterministic and probabilistic
approaches, including competitive evolution and complex
shuffling techniques, making the method effective and flex-
ible for hydrologic model calibration [Duan et al., 1992,
1994]. In this study, the SCE-UA was implemented for
optimizing NSC and ARE objective functions against avail-
able streamflow observations. The resulting calibrated sim-
ulations indicated improved model performance over the
uncalibrated simulations in relation to the station stream-
flow measurement records (not shown).

[28] We validated the streamflow simulations using ten
year (1996–2005) observation records from twelve USGS
gauges of which nine sites included both daily discharge
and temperature data (Figure 3), while three sites had only
discharge data. The model validation was performed at
daily and monthly scales, with validation metrics for all of
the gauges presented in Table 1. Simulated and observed
hydrographs for selected USGS gauge stations are also pre-
sented in Figure 4. The mean daily and monthly NSC val-
ues for all selected gauges are 0.52 and 0.70 respectively,
while the mean annual relative error is 0.14 and mean

Table 1. Model Validation at Stationsa

Gauge Drainage Area (km2) NSC (d) NSC (m) R ARE RMSE MAE

USGS 14105700, Columbia River 613,827
Flow 0.12 0.51 0.76 0.07
Temperature 0.18 0.88 0.82 4.28 3.02

USGS 13334300, Snake River 240,765
Flow 0.72 0.83 0.92 0.005
Temperature 0.87 0.90 0.94 2.36 1.46

USGS 14166000, Willamette River 8,857
Flow 0.47 0.70 0.90 0.17
Temperature 0.79 0.85 0.93 2.07 1.08

USGS 13069500, Snake River 29,292
Flow 0.34 0.65 0.81 0.19
Temperature 0.60 0.61 0.83 3.16 1.96

USGS 13302500, Salmon River 9,738
Flow 0.64 0.71 0.90 0.21
Temperature 0.60 0.99 0.88 2.06 1.15

USGS 12323800, Clark Fork 1,686
Flow 0.23 0.78 0.89 0.18
Temperature 0.89 0.94 0.95 2.04 1.08

USGS13340000, Clearwater River 14,452
Flow 0.75 0.77 0.94 0.11
Temperature 0.94 0.97 0.97 1.76 0.86

USGS 12462500, Wenatchee River 3,369
Flow 0.76 0.86 0.93 0.08
Temperature 0.73 0.87 0.86 2.18 1.24

USGS 12457000, Wenatchee River 1,530
Flow 0.69 0.77 0.90 0.18
Temperature 0.74 0.90 1.59 0.70

USGS 12178000, Skagit River 3,043
Flow <0 <0 0.29 0.12
Temperature 0.47 0.55 0.72 1.62 0.88

USGS 12388700, Flathead River 22,778
Flow 0.23 0.37 0.74 0.26
Temperature 0.82 0.86 0.94 2.80 1.89

USGS 12150800, Snohomish River 3,980
Flow 0.72 0.69 0.88 0.15

aValidation metrics for streamflow are based on simulations for the 1996–2005 period, while the stream temperature metrics are based on the simula-
tions for the 1996–2002 period. NSC(d) and NSC(m) represent daily (d) and monthly (m) summaries.
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Figure 4. Comparison of predicted and measured mean daily discharge from four USGS gauges within
the PNW domain.
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correlation coefficient (R) is 0.82. These results indicate
that the DRTT routing scheme has generally good perform-
ance at the gauge locations.

[29] The current model structure represents natural flow
conditions and does not explicitly represent river regulation
effects and other direct human impacts on streamflow and
temperature. River regulation can adversely affect the rela-
tionship between model natural flow simulations and stream-
flow observations [Elsner et al., 2010; Li et al., submitted
manuscript], especially for the PNW domain where the river
system is under extensive regulation. These effects are par-
tially represented by the model calibration process. We eval-
uated the effect of river regulation on the model-gauge
streamflow comparisons for a lower PNW river location
(USGS 14105700) at The Dalles, OR where we compare
observations, estimated naturalized flows [Hamlet et al.,
2010a], and model streamflow simulations. These results
indicate favorable agreement (NSC ¼ 0.85, ARE ¼ 0.10,
R ¼ 0.96) of spatially integrated flows at this downstream
PNW location and at the monthly time step against natural-
ized flows over a 2 year (1997–1998) record for this site.
Model-data agreement is generally better against naturalized
streamflow in accordance with model representation of natural
flow conditions, though model performance was also favor-
able against the observed, unadjusted flows. These results
indicate favorable performance for representing both natural
and observed PNW flow conditions on a monthly basis, de-
spite the lack of a more explicit model representation of river
regulation effects. However, river regulation impacts may be
larger for upstream locations closer to major impoundments
and reservoirs that may not be adequately represented from
the relatively sparse PNW gauge network used for model
validation.

[30] Gauges representing relatively smaller upstream
drainages and undeveloped areas, including Salmon (USGS
13302500), Clark Fork (USGS 12323800), and Clearwater
(USGS 13340000) gauges showed generally better DRTT
performance that was attributed to more natural flow condi-
tions represented by these areas. The Skagit River site
showed lower model performance relative to other valida-
tion sites (Table 1); the lower model performance reflects
the influence of much stronger river regulation in the Skagit
basin, where three major upstream dams (Gorge, Diablo,
and Ross) provide approximately 25% of the electric power
for Seattle. The anomalous spikes in the Clark Fork flow
simulations (Figure 4) were mainly caused by the smaller
basin drainage size (1686 km2) for which the daily runoff-
routing simulations are sensitive to daily precipitation
variations.

4.2. Stream Temperature

[31] The DRTT streamflow and temperature simulations
are sensitive to the effective surface area of the water pulse
( fA) and associated calibration parameters � and � (equa-
tion (10)). Based on the model calibration efforts and previ-
ous studies [e.g., LeBlanc et al., 1997; Maidment et al.,
1996], � was set as an empirical constant (0.51), while �
was calibrated between 0 � 100. Despite the biological im-
portance of stream temperature, there is a paucity of long-
term water temperature observation data. The USGS may
have the most intensive and continuous regional stream
temperature gauge network, which is still sparse compared

to a much denser PNW streamflow gauge network. The
DRTT temperature model was manually calibrated (by
adjusting �) against mean daily stream temperature obser-
vations at nine USGS stream temperature gauges (Figure 3)
from 2003 to 2005; this period was selected for model cali-
bration because there were relatively few gaps in the site
observations relative to other years of record. These sites
were also used for model validation using a different mea-
surement period (1996�2002). Two additional stream tem-
perature gauges (45A070, 45A110) run by the Washington
Department of Ecology (www.ecy.wa.gov/programs/eap/
fw_riv/rv_main.html) were used for further independent
validation of the DRTT stream temperature simulations;
these sites are colocated with the USGS streamflow gauges
(12462500, 12457000) used for validating model stream-
flow calculations (Figure 3). The main DRTT calibration
strategy involved adjusting model parameters hierarchi-
cally, first within upstream basins, followed by downstream
basins; once an upstream basin was calibrated, parameters
were fixed and the resulting simulations used for calibrat-
ing downstream areas. The resulting temperature validation
metrics are shown in Table 1 and include daily and monthly
NSC, RMSE, and MAE values. Simulated and observed
daily stream temperature conditions are also presented for
the four selected USGS gauge sites in Figure 5.

[32] The DRTT simulations did not produce consistent
overestimation or underestimation of stream temperatures
over the PNW domain, though apparent model bias varies
spatially because of variable stream channel environment,
atmospheric conditions, and anthropogenic effects (e.g.,
impoundments) which may lead to warmer or cooler water
temperatures, whereas the DRTT model only considers
major natural flow thermal dynamics. The model calibra-
tion and validation procedure indicated that the DRTT
stream temperature simulations are sensitive to the relative
accuracy of VIC runoff and DRTT streamflow simulations.
Overestimation (underestimation) of stream temperatures
generally results from underestimation (overestimation) of
streamflow. Better stream temperature accuracy tends to be
achieved when the corresponding DRTT streamflow is rela-
tively better simulated (e.g., Table 1). For example, at the
Clearwater River site (USGS 13340000) both the magni-
tude and timing of streamflow are relatively well simulated
(i.e., daily and monthly NSC values >0.70, R ¼ 0.94,
ARE ¼ 11%); these results coincide with accurate stream
temperature simulations (i.e., respective daily and monthly
NSC values of 0.94 and 0.97, R ¼ 0.97, RMSE ¼ 1.76�C,
MAE ¼ 0.86�C). Lakes and impoundments, groundwater
exchanges, and their effects on streamflows and tempera-
ture conditions are not represented in the model simula-
tions, resulting in low model streamflow correspondence
with gauge observations for the Skagit River site (USGS
12178000), especially regarding seasonal streamflow vari-
ability. The relatively poor Skagit streamflow simulation
(i.e., negative NSC, R ¼ 0.29) leads to inaccurate stream
temperature simulations, with respective daily and monthly
NSC values of 0.47 and 0.55, and reduced correlation (R ¼
0.72) with observational data (Table 1). The DRTT stream
temperature RMSE (1.62�C) and MAE (0.88�C) values for
the Skagit River site show favorable absolute values rela-
tive to the other validation sites, but actually indicate rela-
tively large model bias for this cool water basin which
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Figure 5. Comparison of predicted and measured mean daily stream temperature from four USGS
gauges (same as in Figure 4) within the PNW domain.
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shows a narrow mean seasonal water temperature range
(�4.0�C to �10�C). The DRTT model tends to underesti-
mate stream temperatures along the lower Columbia stem
river, which may be due to model representation of only
natural stream routing and heat sources. Groundwater is
less variable but is generally cooler in summer and warmer
in winter compared to surface flow. In volcanic dominated
PNW landscapes, including the McKenzie River catchment
within the Willamette basin of western Oregon and the
Deschutes River, a mid-Columbia tributary, spring flow
from large and very deep (phreatic) aquifers represents a
major influx of water to the stream channel and has a sig-
nificant cooling effect on summer (JJA) stream tempera-
tures [Tague et al., 2007]. Extensive alluvial floodplains
within the region represent areas of intensive surface-
groundwater interactions that have a moderating effect on
stream temperatures [Poole and Berman, 2001]. These
processes are not represented in the regional VIC and
DRTT simulations. The DRTT model without considering
groundwater tends to overestimate steam temperature in
summer while underestimating temperatures in the other
seasons for the Willamette River station near Harrisburg
OR (USGS 14166000), as shown in Figure 5. Despite these
limitations, the validation results show generally favorable
DRTT model performance for streamflow and temperature,
including respective mean daily and monthly NSC values
for temperature of 0.72 and 0.88, and favorable temperature
correlations (mean R value ¼ 0.89) and mean MAE
(1.39�C) and RMSE (2.35�C) values for the 11 validation
sites (Table 1).

5. Stream Temperature Model Sensitivity
Analysis

[33] A DRTT performance sensitivity test was conducted
for a selected PNW Salmon River observation site (USGS
13302500) for the 2004–2005 period. Model performance
was first evaluated by adjusting the calibration parameter
� and comparing model results against the observations.
The resulting simulations showed strong sensitivity to � ;

the best model performance (NSC¼0.70, RMSE¼1.67,
MAE¼0.91) was achieved when the value of � is 69.7,
while model performance decreases by approximately 6 to
20 percent (according to NSC) with 610% deviations in �.
The effective water pulse surface area increases in propor-
tion to �, by which the water pulse tends to absorb/lose
more heat leading to a higher/lower water temperature.
� has a much narrower rational range (0.01�0.7) of vari-
ability than �, and model performance is not very sensitive
to � within this range; � was therefore set as a constant
(0.51) for this investigation.

[34] An additional model sensitivity test was performed
to evaluate the stream temperature simulation response to
air temperature and streamflow variability for the Salmon
River (USGS 13302500) and 1996–2005 period by intro-
ducing respective streamflow and air temperature bias
while keeping all other variables unchanged. The model
stream temperature performance decreases consistently as
streamflow bias increases, indicating that streamflow mag-
nitude (water heat capacity) plays a significant role in
determining stream temperature. A cool (warm) air temper-
ature bias consistently leads to lower (higher) estimation of

stream temperature. Uncertainty in either streamflow or air
temperature can lead to significant bias in DRTT stream
temperature simulations. A 20% streamflow decrease pro-
duced 0.56�C and 0.96�C increases in mean annual and
summer stream temperature respectively, while a 2.0�C
increase in air temperature produced 0.98�C and 1.25�C
increases in respective mean annual and summer stream tem-
peratures. A 20% decrease in streamflow and 2.0�C increase
in air temperature produced 1.54�C and 2.21�C increases in
mean annual and summer stream temperatures. These results
indicate that air temperature and streamflow changes are two
first-order factors that determine the model stream tempera-
ture response in a global warming context. For example,
model simulations for the Salmon River (USGS 13302500)
show projected 3.52�C and 7.7% increases in mean annual
air temperature and streamflow by the 2080s, which results
in a 2.17�C increase in estimated mean annual stream tem-
perature. A projected 4.51�C increase in mean summer air
temperature and 23.8% decrease in summer streamflow by
the 2080s, leads to a 2.89�C increase in estimated mean an-
nual stream temperature.

6. Projected Streamflow and Temperature
Changes

[35] The VIC and DRTT simulations were conducted on
a grid cellwise basis over the PNW domain. Both historic
and future simulations used the same model setup and
calibration parameters. The resulting simulations included
daily streamflow and stream temperatures at 1/16 degree
spatial resolution for historical (1980s) conditions and pro-
jected future climate scenarios for the 2020s, 2040s and
2080s. Regional estimates of projected climate change
impacts on PNW stream flows and temperature conditions
were derived by evaluating differences in model simula-
tions of these parameters between historical and projected
future conditions.

[36] The generally favorable performance of the VIC
runoff and associated DRTT streamflow and temperature
simulations in reproducing historical conditions repre-
sented by the available PNW observation stations, and the
model sensitivity analysis provide confidence in the inter-
nal model logic and resulting predictions of future flow and
temperature conditions within the domain. The same model
parameters from the historical simulations were applied
with the downscaled IPCC AR4 projected climate forcings
to predict future streamflow and temperature conditions for
the 2020s, 2040s and 2080s. Three runoff regimes were dis-
tinguished for the PNW domain, including snowmelt domi-
nant, rain dominant, and transient systems that were
characterized according to regional minimum air tempera-
ture thresholds [Hamlet and Lettenmaier, 2007]. In this
study, we assessed projected climate change impacts on the
spatial-temporal patterns of streamflow and temperature
linked to regional variations in projected climate change,
hydrologic characteristics and associated stream thermal
dynamics across the PNW domain. Details on AR4 climate
change projections for precipitation and air temperature,
and associated impacts on VIC snow water equivalent
(SWE), soil moisture, and runoff simulations for selected
PNW basins within the three runoff regimes are given by
Elsner et al. [2010]. Although streamflow and temperature
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were calculated for each 1/16 degree grid cell over the study
domain, we assessed the climate change impacts on stream-
flow and temperature based on stream grid cells (defined as
grid cells with at least 5 contributing upstream grid cells,
�300 km2) because regional variations in streamflow and
temperature driven by relatively coarse climate change pro-
jections are less meaningful for smaller catchments [Mote
and Salathé, 2010]. The regional assessment of climate
change impacts is relatively more robust for grid cells with
larger upstream drainage areas, as both streamflow and tem-
perature for each grid cell are calculated as an integrated
result of dynamic hydrologic and thermal processes of
upstream grid cell drainages. Potential effects of impound-
ments and river regulation on stream temperature are also
relatively less in higher-order streams.

[37] We assessed annual and seasonal streamflow and
temperature changes by spatially averaging streamflow and
temperature values from all grid cells within each runoff
domain. The runoff regime for each grid cell was deter-
mined using the mean winter air temperature following
Hamlet and Lettenmaier [2007], but using area averaged
temperatures from all upstream drainage cells. The result-
ing snowmelt dominant runoff regime represents 48% of
the PNW domain, mainly occurring on the east side of the
Cascades in higher-elevation areas with lower characteris-
tic air temperatures (Figures 6–10). The seasonal peak

streamflow in these snow dominated systems generally
occurs in late spring or early summer (May–July) driven by
seasonal snowmelt, while low-flow conditions generally
occur during the winter. Rain dominant runoff regimes rep-
resent approximately 10% of the domain and are mainly
located on the west side of the Cascades at lower elevations
and coastal areas with characteristic warmer air tempera-
tures. These areas generally show seasonal peak flows in
winter (December–February) and low summer flows. Tran-
sient runoff regimes represent 42% of the domain and are
located throughout PNW middle elevation areas with char-
acteristic winter air temperatures varying around freezing.
These areas generally show two seasonal streamflow peaks,
including a winter peak associated with seasonal precipita-
tion and transient snow accumulation and melt events, and
an additional peak in late spring or early summer associated
with seasonal snowmelt. Seasonal low-flow conditions in
these areas generally occur in midsummer to early fall
periods.

6.1. Modeling of PNW Streamflow Changes

[38] Mean annual and summer streamflow conditions
were calculated for each grid cell based on the daily DRTT
model results for historical and future time periods. The
predicted changes in mean annual and summer streamflows
for the 2020s, 2040s and 2080s are shown in Figures 6

Figure 6. Projected mean annual streamflow change as compared to the 1980s over the PNW domain.
The background shaded areas are the three runoff regimes: rain dominant (light gray), transient (medium
gray), and snow dominant (dark gray).
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and 7, respectively, as compared to the 1980s. The pro-
jected flow changes for the three PNW runoff regimes
show an inconsistent trend, with reduced annual streamflow
in the 2020s, but increased annual flows by the 2040s and
2080s relative to historical conditions. Average annual pre-
cipitation across the PNW is projected to increase 1.8% by
the 2020s with decrease (1%) in summer and increases
(2.8%) in all other seasons. However, the mean annual
streamflow decreases in the 2020s are mainly driven by an
average 4% increase in evapotranspiration throughout the
year. In later years, the mean annual streamflow increases
are mainly attributed to relatively more increase in winter
precipitation [Elsner et al., 2010]. Snow dominant areas
show the largest projected changes ranging from a mean
�4.2% (�9.1 m3 s�1) annual flow decrease by the 2020s to
a mean 6.5% (34.8 m3 s�1) flow increase by the 2080s
(Table 2). Areas with positive annual streamflow changes
increase for all three regimes from the 2020s to 2080s. For
example, positive flow trend areas in snow dominant
regimes increase from 17.6% (547 cells out of 3100 cells)
of the domain by the 2020s to 53.1% by the 2040s and
89.5% by the 2080s. Most of the PNW streams show a 0.6
to 5.5 percent increase in mean annual streamflow in the
mid and far future periods relative to historical (1980s)
conditions, with the largest (36.7 to 51.0%) projected
increases occurring in the upper Columbia River basin

(Figure 6). From Table 2, approximately 21% (10 out of
47) of the basin stem rivers in the PNW domain show pro-
jected increases in annual streamflow by the 2020s, while
93% (44 out of 47) of the PNW stem rivers show larger
annual streamflows by the 2080s relative to historical con-
ditions. The larger changes in magnitude and percentage
are projected for annual streamflow in the far future (i.e.,
2080s; Table 2).

[39] Although annual streamflow is projected to increase
in most of the PNW domain by the 2040s and 2080s,
summer flows decrease, with generally higher flows in the
other seasons for all three runoff regimes. However, mean
summer streamflow projections were more spatially vari-
able, with increases occurring in more arid southerly and
central portions of the domain (mostly in transient regime
areas) and decreases occurring elsewhere (Figure 7).
Although summer streamflow changes over the entire PNW
domain vary greatly between �90.8�44.8%, a negative
(decreasing) flow trend is dominant over most of the do-
main, with 93% of all (6286) PNW stream cells showing a
negative projected trend (Table 2). Projected mean summer
streamflows for the PNW region show substantial decreases
of 19.3%, 23.9% and 30.3% for the 2020s, 2040s and
2080s, respectively (Table 2). Summer streamflows also
show relatively larger magnitude changes in the far future,
with a regional mean decrease of 82 m3 s�1 by the 2080s.

Figure 7. Same as Figure 6, but for projected mean summer streamflow change as compared to the
1980s.
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By the 2080s, the Columbia River mouth is projected to
show a mean decrease of 2228.9 m3 s�1 in natural summer
streamflows relative to historical (1980s) conditions.

[40] Hydrographs of mean monthly simulated historical
and future streamflow conditions for the three runoff re-
gime areas and larger PNW domain are shown in Figure 8.
The projected monthly streamflow changes for the three
runoff regimes are similar to the projected changes in three
representative watershed locations in Washington (i.e.,
Chehalis River at Porter, Yakima River at Parker, and Co-
lumbia River at The Dalles), described in a previous study
[Elsner et al., 2010]. Generally, PNW snowmelt dominant
regimes (Figure 8b) are projected to shift toward more tran-
sient characteristics under a warming climate, with lower
spring/early summer streamflow peaks and increased win-
ter streamflow by the end of the 21st century. Transient
regimes (Figure 8c) are projected to shift toward more rain
dominant characteristics, with earlier snowmelt and associ-
ated merging of winter and spring flow peaks. Projected
changes in rain dominant systems (Figure 8d) are relatively
small with no clear seasonal shift in flow timing, but
moderate changes in mean monthly flows. A significant
(1–2 months) shift toward earlier streamflow peaks occurs

for snowmelt dominant streams (Figure 8b), which is gen-
erally larger than previously reported for a single snow
dominant watershed in Washington [Elsner et al., 2010].
Peak flows decrease over time and occur earlier in PNW
transient and snow dominant streams, which is similar to
the change pattern in the nearby Fraser River (British Co-
lumbia) and a snow dominant system reported by Morrison
et al. [2002]. The model results show significant future sea-
sonal changes indicating a general flow increase in winter
and decrease in summer relative to historical conditions.
The projected average monthly hydrograph changes for the
larger PNW domain (Figure 8a) are similar to the snow
dominant regime results because 46% of the PNW area is
classified as snowmelt dominant, with �70% of the lower
Columbia stem river water coming from the northern por-
tion of the domain (i.e., upper Columbia River subbasin)
which has a significant runoff contribution from seasonal
snowmelt in mountainous headwater areas.

6.2. Modeling of Stream Temperature Changes

[41] Similar to streamflow, mean annual and summer
stream temperatures were estimated from the daily stream
temperature simulations for each grid cell and for each

Figure 8. Hydrographs showing monthly averages of simulated daily streamflow from the VIC-DRTT
model for water years for each time period, averaged across domains.
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historical and future time period. The estimated changes in
mean annual and summer stream temperatures for the
2020s, 2040s and 2080s are presented relative to the histor-
ical (1980s) simulations in Figures 9 and 10. The spatial pat-
terns of changes in streamflow (Figures 6 and 7) and
temperature (Figures 9 and 10) share common features. For
example, projected flow and temperature changes within
local stream reaches are generally similar, while abrupt spa-
tial changes often occur at stream confluences (i.e., nodes).
When a tributary with considerable flow magnitude and dif-
ferent temperature merges with a higher-order stream, the
mixing process produces relatively abrupt downstream flow
and temperature changes. These characteristics are generally
consistent with observed stream temperature patterns [Brown
and Hannah, 2008] and indicate that the model provides a
realistic link between estimated stream heat budget and run-
off routing processes.

[42] Almost all streams in the PNW domain show con-
sistent projected mean annual and summer water tempera-
ture increases, but with larger summer increases relative to
mean annual conditions. Mean annual stream temperatures
for the PNW domain show projected increases of 0.55�C
(2020s), 0.93�C (2040s), and 1.68�C (2080s) relative to the
1980s (Table 3), while mean summer stream temperatures

show projected average increases of 0.92�C (2020s),
1.37�C (2040s) and 2.10�C (2080s) for the domain. The
mean monthly stream temperatures averaged over the
entire PNW domain and within the three runoff regimes
are shown in Figure 11. Although there is no significant
seasonal temperature shift, the mean monthly stream tem-
peratures show consistent projected increases across all
three runoff regimes. For the historical (1980s) period,
streams are generally warmer in rain dominant and tran-
sient areas relative to snow dominant regimes (e.g., Figures
9 (top left) and 10 (top left). Snow dominant streams of the
northern PNW domain (predominantly upper Columbia
River basin) show generally lower projected mean annual
temperature than other areas, especially the southern PNW
domain (Figure 9). However, most snow dominant streams
show larger projected summer temperature increases relative
to estimated summer stream temperature changes in other
regime areas (Figure 10). Rain dominant streams show
larger projected temperature increases in winter (Figure 11),
while transient streams show general projected temperature
increases over all seasons.

[43] Projected air temperature changes were determined in
the same way as stream temperature across the domains
(Table 3). The estimated stream temperature changes are

Figure 9. Same as Figure 6, but for projected mean annual stream temperature change as compared to
the 1980s.
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closely related to the projected air temperature and streamflow
changes. The stream temperature results show consistent,
but generally less warming with increasing air temperature
because water has larger specific heat capacity than air and
stream temperature changes are determined by the net
effect of changes in streamflow and the stream energy
budget. Streams with relatively lower projected tempera-
ture increases show generally strong increases in projected
streamflow. This pattern is illustrated in the upper Colum-
bia River basin, which shows large future increases in an-
nual streamflow and only moderate warming. In contrast,
streams with relatively large projected stream temperature
increases coincide with large decreases in estimated future
streamflow. The snow dominant streams show larger pro-
jected summer temperature increases than rainfall and tran-
sient regime streams although air temperatures for snow
dominant areas are projected to have less warming than
other regime areas. These results indicate that projected
summer flow reductions will significantly impact summer
stream temperatures in snow dominant areas. For snow
dominant streams, projected warmer air temperatures result
in reduced snowfall and seasonal advance in the timing of
snowmelt, leading to decreased summer streamflow, which

is the primary reason for relatively higher summer tempera-
ture increases in snow dominant streams. For example,
estimated average summer streamflow (air temperature)
decreases (increases) by 37.8% (4.46�C) for snow domi-
nant streams, relative to respective 22.2% (4.51�C) and
27.6% (4.77�C) decreases (increases) in transient and rain
dominant streams by the 2080s. Snow dominant streams
show larger projected mean summer temperature increases
of 1.23�C (2020s), 1.82�C (2040s) and 2.74�C (2080s) rela-
tive to transient and rain dominant regimes (Table 3). The
relatively higher annual stream temperature increases pro-
jected in snow dominant streams (e.g., Salmon and Clear-
water Rivers) of the southern PNW domain also show lower
projected flows (Figures 6 and 9). The estimated stream tem-
perature sensitivity to air temperature and streamflow
changes indicates that air temperature alone is a poor surro-
gate for determining climate change impacts on aquatic sys-
tems, and that more detailed streamflow and energy budget
characteristics of various hydroclimate regimes should be
considered.

[44] Stream mouths show relatively larger projected
changes in mean annual temperatures than in mean summer
temperatures (Table 3) because most PNW streams reflect

Figure 10. Same as Figure 6, but for projected mean summer stream temperature change as compared
to the 1980s.
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rain dominant regimes. However, the Columbia is the larg-
est PNW stream and represents a snow dominant system;
the Columbia River mouth shows the largest projected
summer temperature change among all other PNW streams,
increasing from 1.88�C (2020s) to 4.37�C (2080s).

7. Summary and Conclusions
[45] A new coupled streamflow and temperature model

(DRTT) was developed, by combining stream thermal dy-
namics simulations with a source-sink routing model. The
DRTT model has three desirable characteristics, including
(1) spatially distributed and continuous daily streamflow
and temperature estimates for larger domains consistent
with macroscale hydrology model based runoff simula-
tions, (2) process based representation of daily streamflow
and temperature conditions along entire streamflow paths,
and (3) relatively simple model setup and calibration. In
this study the DRTT model was applied with VIC runoff

simulations to assess regional patterns, temporal variability
and potential climate change impacts on daily streamflow
and temperature conditions for PNW streams. The VIC
model was used to provide gridded runoff and other forcing
variables for the DRTT simulations. We used the same his-
torical and climate change projected inputs for the VIC
model as Elsner et al. [2010], with additional VIC model
calibrations to achieve more refined runoff and streamflow
simulations for selected subbasins. Model validation and
sensitivity analyses indicated that stream temperature simu-
lation accuracy is strongly dependent on the accuracy of
the streamflow simulations, while the DRTT simulations
showed generally favorable correspondence with stream
gauge historical flow and temperature measurement records
at 14 locations and 12 streams across the PNW domain.

[46] The VIC model driven DRTT simulations were then
used to assess potential PNW streamflow and temperature
impacts from projected future (to 2100) climate conditions
represented by an ensemble of 20 GCMs (A1B scenario)

Table 2. Model-Estimated Mean Annual and Summer Stream Flow Changes Projected for the 2020s, 2040s, and 2080s Across the
PNW Domains, Compared to the 1980s (1970–1999)a

Domains Mean (m3 s�1) Range (m3 s�1) Mean (%) Range (%) N1 N2

Mean Annual Stream Flow Change by 2020s
Snow dominant �9.1 �157.4– 24.1 �4.2 �19.5–7.9 547 2553
Transient �3.3 �222.6–4.7 �2.7 �16.2–21.2 613 2121
Rain dominant �4.0 �51.8–1.4 �3.3 �9.4–5.0 57 395
River mouths �6.5 �222.6–1.4 �2.1 �10.0–5.0 10 37
PNW �6.2 �222.6–24.1 �3.5 �19.5–21.2 1217 5069

Mean Annual Stream Flow Change by 2040s
Snow dominant 10.4 �37.4–182.6 0.3 �19.6–13.6 1645 1455
Transient 0.3 �37.5–115.5 0.9 �14.5–36.7 1566 1168
Rain dominant �1.7 �34.3–7.2 0.1 �6.3–9.8 205 247
River mouths 3.8 �6.3–115.3 1.7 �9.5–9.8 34 13
PNW 5.1 �37.5–182.6 0.6 �19.6–36.7 3416 2870

Mean Annual Stream Flow Change by 2080s
Snow dominant 34.8 �10.7–510.3 6.5 �20.4–20.0 2774 326
Transient 4.2 �19.0–472.3 4.6 �12.5–51.0 2303 431
Rain dominant �0.2 �38.1–21.8 3.7 �7.3–17.1 321 131
River mouths 15.1 �6.2–472.1 6.2 �9.4–16.7 44 3
PNW 19.0 �38.1–510.3 5.5 �20.4–51.0 5398 888

Mean Summer Stream Flow Change by 2020s
Snow dominant �84 �1185.9–0.0 �23.1 �65.1 to �0.5 1 3099
Transient �11.4 �1289.7–0.8 �15.2 �60.2–21.1 184 2550
Rain dominant �5 �63.8–0.0 �18.6 �42.8 to �3.8 1 451
River mouths �33.7 �1289.7–0.0 �16.2 �35.8 to �0.3 0 47
PNW �46.8 �1289.7–0.8 �19.3 �65.1–21.1 186 6100

Mean Summer Stream Flow Change by 2040s
Snow dominant �107.1 �1511.0–0.2 �29.0 �74.5–4.5 21 3079
Transient �14.4 �1646.5–1.8 �18.4 �79.4–34.5 305 2429
Rain dominant �6.4 �82.3–0.0 �22.4 �57.2 to �4.5 1 451
River mouths �43.3 �1646.5–0.3 �20.6 �49.7–2.3 1 46
PNW �59.5 �1646.5–1.8 �23.9 �79.4–34.5 327 5959

Mean Summer Stream Flow Change by 2080s
Snow dominant �148.7 �2228.9–0.4 �37.8 �85.3–10.2 42 3058
Transient �18.6 �2061.8–2.6 �22.2 �90.8–44.8 407 2327
Rain dominant �7.8 �100.9–0.0 �27.6 �70.1 to �6.0 1 451
River mouths �58 �2228.9–0.6 �26.2 �63.3–4.6 4 43
PNW �82 �2228.9–2.6 �30.3 �90.8–44.8 450 5836

aN1 and N2 are the number of grid cells showing positive and negative trends in estimated flow changes. Only river mouth cells with upstream drainage
areas exceeding 300 km2 (five 1/16 degree grid cells) are represented.
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from the IPCC AR4 assessment. The model results indicate
that regional streamflow and temperature conditions are
strongly sensitive to projected near term climate change.
The entire PNW shows a relatively small projected decrease
(�3.5%) in mean annual streamflow in the 2020s, and pro-
jected 0.6% (2040s) and 5.5% (2080s) flow increases in later
years relative to historical (1980s) conditions. The corre-
sponding temperature simulations indicate projected mean
annual stream temperature increases from 0.55�C (2020s)
to 1.68�C (2080s) relative to the 1980s. However, larger
changes are projected for summer streamflow and tempera-
ture conditions. The mean summer streamflow is projected
to decrease from 19.3% (2020s) to 30.3% (2080s), with
increasing summer stream temperatures from 0.92�C (2020s)
to 2.10�C (2080s) for the same period. The warming climate
is projected to have more significant impacts on snow domi-
nant streams, especially in the summer season, with rela-
tively larger changes compared to streams in transient and
rain dominant regime areas. Snow dominant streams show
the largest summer streamflow decreases, ranging from
23.1% (2020s) to 37.8% (2080s), and the highest stream tem-
perature increases (from 1.23�C to 2.74�C for the same pe-
riod). Significant seasonal shifts in streamflow (toward
earlier streamflow peaks) for streams in snow dominant

regimes and decreases in peak flows for streams in transient
regimes are projected for the mid and far future scenarios,
though there is no significant seasonal temperature shift pro-
jected in stream temperatures for streams in these areas.

[47] The projected changes in streamflow and temperature
patterns and seasonal characteristics will likely have major
impacts on aquatic ecosystems and may reshape the patterns
of freshwater salmon habitat and associated productivity in
PNW rivers. Most importantly, projected decreases in
summer streamflow and associated increases in stream tem-
peratures suggests a future with increasing summertime ther-
mal stress, a major bottleneck for cold water fish in the
PNW. The flow and temperature simulations documented in
this paper are being used in more detailed studies of PNW
salmon habitat distributions and potential vulnerability
[Beechie et al., 2012; Whited et al., 2012]. Together with
the results in this study, Whited et al. [2012] developed a
river scape analysis and decision support system to address
the need for a comprehensive database to describe and com-
pare North Pacific Rim basins on the basis of their freshwater
habitat abundance, relative complexity and potential vulner-
ability; Beechie et al. [2012] suggests the change in stream-
flow and temperature may have significant impacts on PNW
salmon populations and the food webs that support them,

Figure 11. Same as Figure 8, but for the stream temperature.
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while most restoration actions focused on in-stream rehabili-
tation are unlikely to ameliorate climate change effects.

Notation

q streamflow rate (m3 s�1).
c kinematic wave celerity (m s�1).
d longitudinal dispersion coefficient (m2 s�1).
t time (s).
x flow distance (m).

Tw water temperature (�C).
�H net heat change rate (W m�2).

fA effective water pulse surface area exposed to
the air (m2).

Cp specific heat of water (J kg�1 �C�1).
M mass of the water pulse (kg).

�iðtÞ response function at source cell i and time
t (s�1).

Ti average lag time (s).Q
i representative Péclet number for a flow path

(dimensionless).
vi mean flow velocity for a grid cell (m s�1).
li flow distance of for a grid cell (m).

Qðx; tÞ routed runoff contributed by an upstream
source cell (m3).

Rðx; sÞ runoff generated in the source cell (m3).
Tw;nðx; tÞ stream temperature of the target cell at loca-

tion x and time t when n upstream water
pulses have reached and mixed (�C).

Qn�1ðx; tÞ streamflow of the target cell when n-1 water
pulses have reached and mixed (m3).

Tw;n�1ðx; tÞ stream temperature of the target cell when
n � 1 water pulses have reached and mixed
(�C).

Twðx; tÞ temperature of the nth water pulse when it
reaches the target cell at time t (�C).

Table 3. Model-Projected Mean Annual and Summer Stream Temperature and Air Temperature Changes for the 2020s, 2040s, and
2080s Across PNW Domains, Compared to the 1980s (1970–1999)a

Change (�C)

Snow Dominant Transient Rain Dominant River Mouth PNW

Mean Annual Stream Temperature Change
By 2020s

Mean 0.56 0.54 0.55 0.53 0.55
Range 0.01–1.09 0.01–0.99 0.27–1.03 0.33–0.97 0.01–1.09

By 2040s
Mean 0.91 0.94 0.93 0.92 0.93
Range 0.03–1.72 0.14–1.72 0.43–1.80 0.58–1.35 0.03–1.80

By 2080s
Mean 1.63 1.76 1.58 1.62 1.68
Range 0.08–2.98 0.55–3.17 0.80–3.08 1.00–2.31 0.08–3.17

Mean Summer Stream Temperature Change
By 2020s

Mean 1.23 0.66 0.40 0.42 0.92
Range 0.20–2.44 �0.27–2.54 �0.04–2.66 �0.03–1.88 �0.27–2.66

By 2040s
Mean 1.82 1.01 0.50 0.62 1.37
Range 0.30–3.44 �0.47–3.97 �0.05–4.08 �0.03–2.72 �0.47–4.08

By 2080s
Mean 2.74 1.62 0.64 0.99 2.10
Range 0.69–4.68 �0.46–5.81 �0.10–5.71 �0.04–4.37 �0.46–5.81

Mean Annual Air Temperature Change
By 2020s

Mean 1.14 1.20 1.26 1.23 1.18
Range 0.90–1.44 0.88–1.43 0.91–1.40 1.10–1.40 0.88–1.44

By 2040s
Mean 2.02 2.12 2.22 2.16 2.08
Range 1.00–2.54 1.58–2.54 1.67–2.44 1.97–2.46 1.00–2.54

By 2080s
Mean 3.18 3.37 3.46 3.40 3.28
Range 1.00–4.50 2.96–4.50 3.08–4.33 3.59–4.39 1.00–4.50

Mean Summer Air Temperature Change
By 2020s

Mean 1.51 1.58 1.69 1.65 1.56
Range 1.00–1.75 1.13–1.77 1.15–1.76 1.41–1.74 1.00–1.77

By 2040s
Mean 2.76 2.81 2.98 2.96 2.81
Range 1.00–3.08 2.12–3.06 2.22–3.07 2.76–3.07 1.00–3.08

By 2080s
Mean 4.46 4.51 4.77 4.79 4.55
Range 1.00–5.48 3.92–5.44 4.02–5.46 5.01–5.45 1.00–5.48

aOnly river mouth cells with upstream drainage areas exceeding 300 km2 (five 1/16 degree grid cells) are represented.
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Qp magnitude of a water pulse (m3).
� linear coefficient that define the shape of fA

response to Qp (dimensionless).
� exponent that define the shape of fA response

to Qp (dimensionless).
L upstream dominant stream length (m).
l average flow distance of each grid cell from

all upstream grid cells (m).
Theadwater headwater temperature (�C).

Tannual mean annual air temperature (�C).
Tair actual air temperature (�C).
Hs net solar short-wave radiation (W m�2).
Hl net long-wave radiation (W m�2).
He flux of latent heat (W m�2).
Hc conductive heat flux at the streambed (W m�2).
Hh flux of sensible heat (W m�2).
Ha advective heat flux (W m�2).
Hsi incoming short-wave solar radiation (W m�2).
Hli incoming atmosphere long-wave radiation

(W m�2).
� Stefan-Boltzmann constant (5.67 � 10�8

W m�2 K�4).
� water density (kg m�3).
E evaporation rate (mm d�1).

Le latent heat of vaporization (J/kg).
Kl empirical coefficient for the turbulent

exchange of water vapor (mm/(d hPa)).
esat saturation vapor pressure at the water surface

(hPa).
e actual vapor pressure (hPa).

Vwind estimated local wind speed at 10m height
(m s�1).

Fwind dimensionless factor for wind sheltering by
riparian vegetation (dimensionless).

� psychrometric constant at normal pressure
(0.655 hPa/�C).

P actual air pressure (hPa).
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